Unambiguous Recognizable Two-dimensional Languages

Marcella Anselmo, Dora Giammarresi, Maria Madonia, Antonio Restivo
(Univ. of Salerno, Univ. Roma Tor Vergata, Univ. of Catania, Univ. of Palermo)

W2DL, May 2006
REC family I

• REC family is defined in terms of local languages

• It is necessary to identify the boundary of a picture p using a boundary symbol $\# \notin \Sigma$

\[
p = \begin{array}{cccc}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
\end{array}
\quad \rightarrow \quad \widehat{p} = \begin{array}{cccc}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
\end{array}
\]

• L is local if there exists a set Θ of tiles (i.e. square pictures of size 2×2) such that, p in L if and only if any sub-picture 2×2 of \widehat{p} is in Θ
Example of local language

L_d = the set of square pictures with symbol “1” in all main diagonal positions and symbol “0” in the other positions

\[\Theta = \{ \begin{array}{ccccccccc} 1 & 0 & 0 & 0 & 1 & 0 & 0 & # & 1 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & # & 0 \\
0 & # & 0 & # & # & # & # & # & # \\
1 & # & 0 & 0 & 1 & 0 & 1 & 0 & # \end{array} \} \]

$p = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \rightarrow \hat{p} = \begin{bmatrix} # & # & # & # & # \\ # & 1 & 0 & 0 & # \\ # & 0 & 1 & 0 & # \\ # & 0 & 0 & 1 & # \\ # & # & # & # & # \end{bmatrix} \]
REC family II

- **L** is recognizable by tiling system if \(L = \pi(L') \) where \(L' \) is a local language and \(\pi \) is a mapping from the alphabet of \(L' \) to the alphabet of \(L \).

Example: The set of all squares over \(\Sigma = \{a\} \) is recognizable by tiling system.

Set \(L' = L_d \) and \(\pi(1) = \pi(0) = a \)

\[
\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}
\in L_d \quad \pi
\begin{array}{ccc}
a & a & a \\
a & a & a \\
a & a & a \\
\end{array}
\]

- **REC** is the family of two-dimensional languages recognizable by tiling system.
About Unambiguity

• Definition of REC is implicitly non-deterministic

• The determinism and non-determinism are no more equivalent in REC: the deterministic models (4DFA, 2DOTA, ...) don’t recognize the whole REC

• REC is not closed under complement, so it is not possible to eliminate non-determinism from the model (without losing in power of recognition)

• An intermediate notion between determinism and non-determinism is the notion of unambiguity
Unambiguous Recognizable Languages

Def [GR92] A tiling system \((\Sigma, \Gamma, \theta, \pi)\) is \textit{unambiguous} for \(L \subseteq \Sigma^{**}\) if the projection \(\pi\) is injective on \(L(\theta)\) (i.e. for any \(p \in L\) there is a unique \(p' \in L'\) such that \(\pi(p') = p\)).

\(L \subseteq \Sigma^{**}\) is \textit{unambiguous} if it admits an unambiguous tiling system.

\textbf{UREC} denotes the family of all unambiguous recognizable 2dim languages.

- \(\textbf{UREC} \subseteq \textbf{REC}\)
- Generalization in 2dims of unambiguous automata for strings
Example: $L_{\text{col-1n}} = \{ p \mid \text{first } \text{col} = \text{last } \text{col} \} \subseteq \{a,b\}$

- $L_{\text{col-1n}} \in \text{REC}$

Idea: Use $\Gamma = \{x_y\}$ where

- the subscript y saves the symbol of the first column and

- $\pi(x_y) = x$

\[p = \begin{array}{ccc}
 b & b & a & b \\
 a & a & a & a \\
 b & a & b & b \\
 a & b & b & a \\
\end{array} \quad \rightarrow \quad p' = \begin{array}{ccc}
 b & b & a & b \\
 a & a & a & a \\
 b & a & b & b \\
 a & b & b & a \\
\end{array} \]

- $L_{\text{col-1n}} \in \text{UREC}$
UREC and REC

- **UREC \(\subsetneq\) REC? Yes**

\[
L_{\text{col-ij}} = \begin{cases}
\text{col } i = \text{col } j
\end{cases}
\]

\[
L_{\text{col-ij}} = \sum^{**} \ominus L_{\text{col-1n}} \ominus \sum^{**} \text{ and REC is closed with respect to } \ominus
\]

\[
L_{\text{col-ij}} \in \text{REC}
\]

\[
L_{\text{col-ij}} \notin \text{UREC}
\]

WHY?
Towards a necessary condition for unambiguity

- Reduce two dimensional languages to string languages over the alphabet of the columns (i.e. define $L(m)$)

- Use the Theorem of Hromkovic et al. for a lower bound on the states of an unambiguous automaton for a string language
From 2dim to 1dim

Let $L \subseteq \Sigma^{**}$. For any m consider the subset $L(m) \subseteq L$ of all pictures with exactly m rows.

- $L(m)$ can be viewed as a string language over the alphabet of the columns.

Example:

$$p = \begin{bmatrix}
 b & b & a \\
 a & a & a \\
 b & a & b \\
 a & b & b
\end{bmatrix} \in L \quad \text{the string } w = \begin{bmatrix}
 b \\
 a \\
 b \\
 a
\end{bmatrix} \begin{bmatrix}
 b \\
 a \\
 b \\
 b
\end{bmatrix} \in L(4)$$
An automaton for $L(m)$

Theorem [Matz 97] Let $L \subseteq \Sigma^{**}$. If $L \in \text{REC}$, then there is a k such that, for all m, there is a finite string automaton A_m with k^m states for $L(m)$.

Idea of Proof: Let $(\Sigma, \Gamma, \theta, \pi)$ a tiling system for L.

- The states of A_m are all the possible columns (of height m) in the local alphabet Γ, plus an initial state.
Idea of Proof (continued)

- There is an edge from column p to column q if and only if any sub-picture 2×2 of $p \oplus q$ is in θ. The label for this edge is $\pi(q)$

Example: In $L_{\text{col-1n}}$ we have
Theorem of Hromkovic et al.

Def Let \(S \subseteq \Sigma^* \) be a regular string language. Define the infinite boolean matrix \(M_S = \{a_{\alpha\beta}\} \), where \(a_{\alpha\beta} = 1 \) if and only if \(\alpha\beta \in L \).

- Since \(S \) is regular, the number of different rows of \(M_S \) is finite.

Let \(S \subseteq \Sigma^* \) be a regular string language. Denote by \(\text{uns}(S) \) the size of a minimal unambiguous non-deterministic automaton accepting \(S \).

Theorem (Hromkovic et al.) For every regular string language \(S \subseteq \Sigma^* \), \(\text{uns}(S) \geq \text{Rank}_Q(M_S) \).
A necessary condition for unambiguity

Theorem Let $L \subseteq \Sigma^{**}$. If $L \in \text{UREC}$, then there is a k such that, for all m, $\text{Rank}_Q(M_{L(m)}) \leq k^m$.

Proof:

• Note that if $L \in \text{UREC}$ then the automaton A_m for $L(m)$ is unambiguous

• Use the inequality $\text{uns}(L(m)) \geq \text{Rank}_Q(M_{L(m)})$
Consider \(L = L_{\text{col-ij}} \)

For every \(m \), \(L(m) \) is a language of strings with at least two occurrences of the same symbol.

It is possible to show that \(M_{L(m)} \) has Rank equal to \(2^{\left| \Sigma \right| m} + 1 \) against the necessary condition for UREC.

Theorem (restated) There exist recognizable 2dim languages that are inherently ambiguous.
Properties of UREC

Proposition UREC is closed under intersection and rotation operations.

Proposition UREC is not closed under row/column concatenation/closure.

Proof:

\(L_{\text{col-1n}} \in \text{UREC}. \)

But \(L_{\text{col-ij}} = \Sigma^{**} \bigodot L_{\text{col-1n}} \bigodot \Sigma^{**} \notin \text{UREC}. \)
Using automata characterization

Def A 2UOTA is a 2OTA such that it has at most one accepting run on a picture p.

Theorem \(L(2DOTA) \not\subset L(2UOTA) \not\subset L(2OTA) \).

Proof: Note that \(L(2UOTA) = \text{UREC} \) (see also Mäurer02) and \(L(2OTA) = \text{REC} \).

- For the first inclusion, consider the language \(L = \{ p \mid p \text{ is a square} \land \text{last row} = \text{last col} \} \subseteq \{a,b\}^* \)
 \(L \not\in L(2DOTA) \) but \(L \in L(2UOTA) \)

- The second inclusion follows from \(L(2UOTA) = \text{UREC} \not\subset \text{REC} = L(2OTA) \)
An undecidability result

Theorem Given a tiling system \((\Sigma, \Gamma, \theta, \pi)\) for \(L \subseteq \Sigma^*\), it is undecidable whether it is unambiguous.

Proof: By reduction from the undecidable 2dimensional Unique Decipherability Problem.
Further work

• Questions related to UREC

• Questions related to (?) DREC (deterministic version of REC)
Open Problems

• Is UREC closed under complement?

• Is UREC largest subset in REC closed under complement?

Conjecture: If $L \in \text{REC}\setminus\text{UREC}$ then $\sim L \notin \text{REC}$
About Deterministic Recognizable 2dim Languages

• Many deterministic models: 4DFA, 2DOTA, … They don’t recognize the whole REC

• In string languages the notion of determinism is, in some sense, “oriented”:
 - Determinism from left to right
 - Co-determinism from right to left

• In a picture four different directions.

• Two proposals for the definition of 2dimensional determinism.
First approach

Idea: A tiling system ($\Sigma, \Gamma, \theta, \pi$) is *Top-Left-deterministic* if $\forall a,b,c \in \Gamma$ and $s \in \Sigma \exists$ unique tile such that $\pi(s)=d$.

(Analogously *TR-, BL-, BR-deterministic* tiling system)

L is *deterministic* if L has a tiling system that is deterministic with respect to some direction (TL or TR or BL or BR)
Second approach

Idea: A tiling system is left-to-right column-deterministic if, after having computed the local symbols in an entire column of a picture, the local symbols on the next one are univocally determined.

L is deterministic if L has a tiling system that is deterministic with respect to one direction by column and a tiling system that is deterministic with respect to one direction by row.
Working proposal for these days

• Find an appropriate definition for determinism in terms of tiling system that is not oriented as the recognition by tiling systems
The end